284 research outputs found

    International Frameworks Dealing with Human Risk Assessment of Combined Exposure to Multiple Chemicals

    Get PDF
    The development of harmonised terminology and frameworks for the human risk assessment of combined exposure to multiple chemicals (“chemical mixtures”) is an important area for EFSA and a number of activities have already been undertaken, i.e. in the fields of pesticides and contaminants. The first step prior to a risk assessment of combined exposure to multiple chemicals is problem formulation defining the relevant exposure, hazard and population to be considered. In practice, risk assessment of multiple chemicals is conducted using a tiered approach for exposure assessment, hazard assessment and risk characterisation. Higher tiers require increasing knowledge about the group of chemicals under assessment and the tiers can range from tier 0 (default values, data poor situation) to tier 3 (full probabilistic models). This scientific report reviews the terminology, methodologies and frameworks developed by national and international agencies for the human risk assessment of combined exposure to multiple chemicals and provides recommendations for future activities at EFSA in this area

    Refinement of arsenic attributable health risks in rural Pakistan using population specific dietary intake values

    Get PDF
    Background: Previous risk assessment studies have often utilised generic consumption or intake values when evaluating ingestion exposure pathways. If these values do not accurately reflect the country or scenario in question, the resulting risk assessment will not provide a meaningful representation of cancer risks in that particular country/scenario. Objectives: This study sought to determine water and food intake parameters for one region in South Asia, rural Pakistan, and assess the role population specific intake parameters play in cancer risk assessment. Methods: A questionnaire was developed to collect data on sociodemographic features and 24-hour water and food consumption patterns from a rural community. The impact of dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by calculating cancer risks using the data collected in the current study against standard water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk was performed for each set of intake values of this study. Results: Average daily total water intake based on drinking direct plain water and indirect water from food and beverages was found to be 3.5 L day-1 (95% CI: 3.38, 3.57) exceeding the US Environmental Protection Agency’s default (2.5 L day-1) and World Health Organization’s recommended intake value (2 L day-1). Average daily rice intake (469 g day-1) was found to be lower than in India and Bangladesh whereas wheat intake (402 g day−1) was higher than intake reported for USA, Europe and Asian sub-regions. Consequently, arsenic-associated cumulative cancer risks determined for daily water intake was found to be 17 in children of 3-6 years (95% CI: 0.0014, 0.0017), 14 in children of age 6-16 years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67 years (95% CI: 0.0006, 0.0006) in a population size of 10000. This is higher than the risks estimated using the US Environmental Protection Agency and World Health Organization’s default recommended water intake levels. Rice intake data showed early life cumulative cancer risks of 15 in 10000 for children of 3-6 years (95% CI: 0.0012, 0.0015), 14 in children of 6-16 years (95% CI: 0.0011, 0.0014) and later life risk of 8 in adults (95% CI: 0.0008, 0.0008) in a population of 10000. This is lower than cancer risks in countries with higher rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk from arsenic exposure showed the relative risk contribution from total water to be51%, from rice to be44% and wheat intake 5%. Conclusions: The study demonstrates the need to use population specific dietary information for risk assessment and risk management studies. Probabilistic risk assessment concluded the importance of dietary intake in estimating cancer risk, along with arsenic concentrations in water or food and age of exposed rural population

    Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tap water may be an important source of exposure to arsenic and nitrate. Obtaining and analyzing samples in the context of large studies of health effects can be expensive. As an alternative, studies might estimate contaminant levels in individual homes by using publicly available water quality monitoring records, either alone or in combination with geographic information systems (GIS).</p> <p>Methods</p> <p>We examined the validity of records-based methods in Washington State, where arsenic and nitrate contamination is prevalent but generally observed at modest levels. Laboratory analysis of samples from 107 homes (median 0.6 Όg/L arsenic, median 0.4 mg/L nitrate as nitrogen) served as our "gold standard." Using Spearman's rho we compared these measures to estimates obtained using only the homes' street addresses and recent and/or historical measures from publicly monitored water sources within specified distances (radii) ranging from one half mile to 10 miles.</p> <p>Results</p> <p>Agreement improved as distance decreased, but the proportion of homes for which we could estimate summary measures also decreased. When including all homes, agreement was 0.05-0.24 for arsenic (8 miles), and 0.31-0.33 for nitrate (6 miles). Focusing on the closest source yielded little improvement. Agreement was greatest among homes with private wells. For homes on a water system, agreement improved considerably if we included only sources serving the relevant system (ρ = 0.29 for arsenic, ρ = 0.60 for nitrate).</p> <p>Conclusions</p> <p>Historical water quality databases show some promise for categorizing epidemiologic study participants in terms of relative tap water nitrate levels. Nonetheless, such records-based methods must be used with caution, and their use for arsenic may be limited.</p

    Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States

    Get PDF
    Significant changes in emission sources have occurred in the northeastern United States over the past decade, due in part to the implementation of emissions standards, the introduction and addition of abatement technologies for road transport, changes in fuel sulfur content for road and non-road transport, as well as economic impacts of a major recession and differential fuel prices. These changes in emission scenarios likely affected the concentrations of airborne submicron particles. This study investigated the characteristics of 11–500 nm particle number concentrations and their size spectra in Rochester, NY during the past 15 years (2002 to 2016). The modal structure, diurnal, weekly and monthly patterns of particle number concentrations are analyzed. Long-term trends are quantified using seasonal-trend decomposition procedures based on “Loess”, Mann-Kendall regression with Theil-Sen slope and piecewise regression. Particle concentrations underwent significant (p &lt; 0.05) downward trends. An annual decrease of −323 particles/cm3/y (−4.6%/y) was estimated for the total particle number concentration using Theil-Sen analysis. The trends were driven mainly by the decrease in particles in the 11–50 nm range (−181 particles/cm3/y; −4.7%/y). Slope changes were investigated annually and seasonally. Piecewise regression found different slopes for different portions of the overall period with the strongest declines between 2005 and 2011/2013, followed by small upward trends between 2013 and 2016 for most size bins, possibly representing increased vehicular traffic after the recovery from the 2008 recession

    The emergence of circular economy: a new framing around prolonging resource productivity

    Get PDF
    In this article we use Hirsch and Levin’s (1999) notion of ‘umbrella concepts’ as an analytical lens, in order to articulate the valuable catalytic function the circular economy concept could perform in the waste and resource management debate. We realize this goal by anchoring the circular economy concept in this broader debate through a narrative approach. This leads to the insight that while the various resource strategies grouped under circular economy’s banner are not new individually, the concept offers a new framing of these strategies by drawing attention to their capacity of prolonging resource use as well as to the relationship between these strategies. As such, circular economy offers a new perspective on waste and resource management and provides a new cognitive unit and discursive space for debate. We conclude by discussing research opportunities for the IE community relating to the concept’s theoretical development and its implementation. Specifically, we pose that reinvigorating and growing the social science aspects of IE is required for both. After all, it is the wide adoption and collective implementation of an idea that shapes our material future
    • 

    corecore